Getting and Analyzing Inconveniently
Structured Data in the Internet
Era: Making Friends with Python,

Webscraping, and APIs

regulations.gov :.!

B Robert Letzler PhD, Senior Economist

US Government Accountability Office

Goal: Inform decisions about automating
repetitive work that is hard in other tools
Topics of discussion

* The right tools can tame a deluge of
“inconveniently” formatted data

* Example: FITARA conversion and
analysis

* Quality control tools
* Where to get started and find help

Modern agencies create a deluge of
“inconveniently” formatted data

* Government increasingly operates, publishes,
discloses, and gets public input electronically

¢ Data are often fragmented on the web (or a
network drive)

¢ And often stored in a markup language or PDF:
— Web = HTML
— Microsoft Office (zipped) XML: DOCX, PPTX, XLSX
— Data = XML, JSON

e SAS, Stata, Python, R, and Excel can handle
“conveniently” formatted data tables

This is an inconvenient package ...

until you get a can opener!

Python is a can opener and a lot more

Free, approachable tools can help
collect and extract that
“inconveniently” formatted data
* The web, markup languages, and PDFs work in
predictable, understandable ways

¢ A few programming courses and willingness to
read, Google, and experiment goes a long way

¢ These tools shine for the big easy: easily
described, very repetitive tasks

¢ Here are some examples of data types,

extraction challenges, and recent GAO
projects

Assessing what is involved in automating website interaction: first see if it
provides tools for you

¥ @ sequistasns o » T E P 4+ e S

. et Home Heip ¥ Rescurces T
regulations:gov
Yawr Volce In Federal Decialon Making Q, search n

Make a difference. Submit your comments and let your voice be hea

SEARCH for: Rules, Comments, Adjudications or Supportil
Best case:

L jqcumentation

for “developers”

" .) or of the “API”
il What's Trending & _
FAA Section 333

APIs: user interfaces for computers

Websites have lots of formatting for humans
* An API eliminates this clutter

e Atypical API offers:

— Ability to query through a web request:
http://api.data.gov:80/regulations/v3/documents.jso
n?api_key=DEMO_KEY&dktid=OCC-2013-0003

— Results in JSON — key:value pairs, which map to
Python dictionaries

{ "documents": [

{ "agencyAcronym": "0CC",
"allowLateComment™: false,
"attachmentCount': 1,

GAO projects using APIs

¢ Downloaded 190 public comments on the
Community Reinvestment Act from
regulations.gov

¢ Generalizing that code to create an in-house web-
form to generate a ZIP file containing the
documents on any docket

¢ Downloading hundreds of proposed rules listed

on team spreadsheets from FederalRegister.gov

Building a database of who is coauthoring or

citing each other’s work in green chemistry using

Elsevier SCOPUS

If there’s no API, see how the site
requests or presents information

Foderal Depos
FD 5 Insurance Corporation

=

You can typically automate using just a few relevant pieces - e.g. post-method
form submission and page requests; or tags around relevant elements

A GAO project involving post-method
forms

* We needed to identify FDIC Community
Reinvestment Act exams conducted in 2015
— This required running ~300 queries (50+
jurisdictions x 2 year x 3 exam types); checking for
2015 in the URL; downloading the 2015 PDFs and
creating a comma separated value (CSV) data
table. We analyzed the table in SAS
* Website was complicated but limited; the
substance complicated; and the audit needs
evolving. The project took us about a month

Webpages are written in a markup
language, HTML (typically plus
JavaScript and Cascading Style Sheets)

e Use “view source” to look at the HTML
st [so00 |
West $49,950
¢ <TABLE> <TR><TD> East</TD><TD>
$20,000</TD></TR>
e <TR><TD>West</TD><TD>
$49,950</TD></TR></TABLE>
* |f we extact the contents of all the <TD>table
cells</TD> and save them in comma separated form,
the results will go right into Excel, SAS, or Stata

Extracting data tables from
webpages - S e

5 E-g
S
£

o, Bark Peldng <o

b £ Srmsead ratio wih adgssied pland

Fed data were in a fragmented, inconvenient format
We need to import them in bulk

(can process data in Python, SAS, Stata, or Excel)
A documented process is desirable

Web site automation difficulty

Difficulty Type Strategy

Easiest Static sites just grab the relevant webpages (a copier

like WinHTTrack may be sufficient)

Easy Get method forms — Generate desired HTTP requests (e.g.
everything important https://www.google.com/?gws rd=ssl#g=au
is in the URL: tomating+HTTP+requests) and use results

Easy AP| —a user interface Generate HTTP requests to run desired

tuned for computers queries; interpret the conveniently
formatted results

Not so Post method forms Inspect element, watch the network to
hard identify the “payload” to send the form and
additional requests to make
Involved +Javascript, Cookies, Above strategies plus additional steps
CSS, AJAX, poor
organization, anti
scraping features

PDF is built to describe page layout,
not meaning

e APIs are often an ideal data source. PDF is never
the ideal data source — but it may be the best
available

* |t may contain (high quality or garbled) machine
readable text; OCR can make images into text.

e Extracting and processing plain text is often
straightforward

¢ |nitial attempts to extract tabular data using
specialized software yielded mixed results

A GAO audit automated search and
documentation of compliant language
in PDFs

¢ Goals:

— Checking ~200 messy PDF files to see if each
contract had 3 required, boilerplate clauses

— Edit distance was a crucial tool to identify the best
match

— Rapidly find apparent, obvious non compliance for
further investigation (e.g. agency sent wrong doc)

— Extract the PDF pages with interesting language

— Allow one analyst to efficiently verify rather than
one to find and document and one to verify

Automatically filled much of the DCI

Contract Name (DM link to file match OCR text of analyst
containing location(s) for jpotential match for [review
pages with [terrorism errorism clause and
match for clause in the notes
terrorism file with the
clause best match

Chemtronics DM#123 Page 2, top prohibitlon against

Sueport for Terronsm:
(a) The
Contrador/Reclplent
IBEX DM#124 Page 12 middle frohibilion against
Support for Terrorism:
(a) The
Contractor/Recipient ...

Research DM#125 Page 4 Prohibition against

Octagon Support for Terrorism:

Institute (a) The

Contractor/Recipient ...

Frontiers

* Named Entity Recognition
— Automatically extracts many of the names,
locations, and organizations in plain text
* Text classification
— Show the computer example documents that are
or are not something of interest (a discussion of

an IT system intrusion). Then have the computer
find more examples of interest

We tackled the projects discussed here in Python

Python is often the right tool

¢ A popular, high level (i.e. a little code can do a lot)
programming language designed to be easy to
learn

¢ Python and hundreds of libraries are free

¢ Multiplatform (Windows, UNIX, Mac)

¢ Supports ideas you’ve learned in SAS, Stata, or
Java

e Extremely flexible: Many applications beyond
data collection / extraction

¢ Other languages’ capabilities overlap Python’s
including C/C++/Java/C#, PERL, R, SAS, Stata

Is Python right for you?

¢ |s the task just transforming or SAS/Stata/R
If they’re
established

analyzing an existing database

¢ Do we have / can we justify a Specialized
specialized tool that is faster or ﬁ E"r‘c'r';‘:jf
deals with any nasty complexities? converter)

If each
instance
requires lots
of judgment,

do it by
hand

* Can you write a precise “pseudo- —“->

code” recipe fgr the task?
Consider Python!

e “Python is still my favorite language for
making my computer do things. ...C# is my
favorite language for building systems.”

-professional software developer

Putting Python in Context

* SAS and Stata are at their best working with
databases

¢ Python is a general purpose language with
database, file, text, math, and internet
libraries available
— Far more flexible; more varied uses
— It assumes less, so you’ll have to write a bit more

Integrated development environments (e.g. Spyder,
IDLE) help write, debug, and run (press F5) Python

wEED AN rep—— Ty

It marks

line 31

which R
Is missing a [,
colon

Goal: Inform decisions about automating
repetitive work that is hard in other tools
Topics of discussion

* The right tools can tame a deluge of
“inconveniently” formatted data

* Example: FITARA conversion and
analysis

¢ Quality control tools
* Where to get started and find help

FITARA JSON conversion: the ask

— Agencies posted updates to their FITARA
implementation plans on April 30, 2016 at
https://management.cio.gov/plans/”

— Step 1: convert the plans from JSON to Excel

— Step 2: find instances where “milestoneStatus” = “In
progress” and “MilestoneTargetCompletionDate” is
before the file date

— As usual, the most time consuming part will be
dealing with non standard formats or unexpected
entries. That is omitted for brevity here — the demo
code leaves out six agencies that use non standard file
formats.

Strategy: convert JSON to pipe
delimited text, which Excel reads

{"milestones": [

{ "milestonelD": 1,

"milestoneDesc": "The Enterprise Information Technology (IT).... ",
"milestoneTargetCompletionDate": "2015/12/31",
"milestoneStatus": "Complete",

"milestoneStatusDesc": "Completed on 2015/12/03. ...",
"commonBaselineArea": "budgetFormulation", "dcoiArea":
"nonDataCenter" }, A python dictionary is denoted:

{“key”:value,”key2”:value}

1| The Enterprise Information Technology (IT) |2015-12-31
00:00:00| Complete|Completed on 2015/12/03....
|budgetFormulation|nonDataCenter

Python code

¢ |s extremely specific machine readable
instructions

¢ Mixes (clever) application of simple tools [e.g.
loops, lists, variables, dictionaries] and
(simple) application of specialized libraries
[e.g. requests, trace]

¢ Generally has only as much common sense as
you give it (if 2000/1/1 is the same as Jan-1-
00, say so)

Define some key lists and a function

the requests library facilitates http:// requests

#requests has routines for accessing the web through HTTP requests
#we" 11 use datetime to convert text dates into numbers we can readily compare.
import requests, datetime, csv,trace, sys

#this definition is a JSON dictionary lookup that returns a blank if the key does
not exist in the dictionary
#and eliminates stray newlines
def extract(json_dict,key):
if key in json_dict:
return str(json_dict[key]).replace("\n",")
else:
return "

def main(working_directory):

#List of links captured from the “Public FITARA April 30th Milestone Updates"
section oF https://management.cio.gov/plans/

#some agency"s links were missing: DoD, Energy and Labor

fitara_link_li
[http://www.usda. gov/dlgltalstrategy/fltaramlIestones Json”
https //www . commerce . gov/sites/commerce. gov/flles/fltaramlIestones Json”

A python list is denoted [item1,item2,item3]

Open files for output and put headers
on them

all_agency_file = open(working_directory+"Fitara.txt",
errors="backslashreplace")
all_agency_csv = csv.writer(all_agency_file, lineterminator="\n', delimiter="|")

all_agency_csv.writerow(["URL","file_date","milestonelD","milestoneDesc","miles
toneTargetCompletionDate","milestoneStatus","milestoneStatusDesc","commonB
aselineArea","dcoiArea"])

overdue_file = open(working_directory+"Fitara_inProgress_overdue.txt",
errors="backslashreplace")

overdue_csv = csv.writer(overdue_file, lineterminator="\n', delimiter="|")
overdue csvwrlterow(["URL" "file_date", "mlIestoneID" "mlIestoneDesc" "milesto
neTargetCompletionDate", mllestoneStatus mllestoneStatusDesc "commonBas
elineArea","dcoiArea"])

Visit each agency’s URL and get its
update date

for agency_URL in fitara_link_list:
print(agency_URL)
agency_plan = requests.get(agency_URL)
file_date =
datetime.datetime.strptime(agency_plan.json()[
"updatedDate"],"%Y/%m/%d")

10

Take steps for each milestone— extract
target dates, create a list of fields,
write it to the appropriate files

Python “dictionary.”

for milestone in agency_plan.json()["milestones"]:

targetCompletionDate =
datetime.datetime.strptime(milestone["milestoneTargetCompletionDa
te"],"%Y/%m/%d")

output_list = [agency_URL, str(file_date),
extract(milestone,"milestonelD"), extract(milestone,"milestoneDesc"),
str(targetCompletionDate), extract(milestone,"milestoneStatus"),
extract(milestone,"milestoneStatusDesc"),
extract(milestone,"commonBaselineArea"),
extract(milestone,"dcoiArea")]

all_agency_csv.writerow(output_list)

if (milestone["milestoneStatus"]=="InProgress") and
(targetCompletionDate < file_date):

overdue_csv.writerow(output_list)

Close the files and create an audit trail

all_agency_file.close(Q)

overdue_file.close()

#PROBABLY WE SHOULD ADD A LOG THAT RECORDS THE FILE
DATE AND SIZE OF THIS FILE; THE SIZES OF ALL TI
DOWNLOADED FILES, THE START TIME, ETC.

create a Trace object -- which will create a log file
that counts the number of executions of each line below.
tracer = trace.Trace(

#the goal of this line -- which comes straight from
the sample code -- is to generate trace files only for
GAO-written code and not more than a dozen trace files for
Python-supplied code

ignoredirs=[sys.prefix],

trace=0,

count=1)

Run everything and write out the trace
log file
working_directory = "R:\\letzlerr\\FITARA\\"

run the whole above program while using the
tracer object to log which lines got executed. This is
separate from "logging," the file 1/0 log above

tracer.run('main(working_directory)')
#now write the trace results to disk
trace_results = tracer.results()

trace_results.write_results(show_missing=True,
coverdir=working_directory)

11

Goal: Inform decisions about automating
repetitive work that is hard in other tools
Topics of discussion

* The right tools can tame a deluge of
“inconveniently” formatted data

* Example: FITARA conversion and
analysis

* Quality control tools
* Where to get started and find help

If you are writing code for a single data
set, you don’t care about weird
circumstances that don’t arise in it

¢ Are we running on a static input data set or do
we intend to reuse this code with varying
inputs that force us to be ready for challenges
unseen in the test data?

Asserting that things are as expected
lets Python warn you if they’re not
* Assert checks a condition you specify and
raises an “exception” if it is not true.
— SSN length? Thou shall count to 9; 10 is right out!

— Assert is your friend.

* In Python, an exception can stop the program
or jump to an “except:” section of the code

12

GAO uses internal guidance papers to
ensure appropriate planning, audit
trail, and review of computer code

¢ Planning data analysis

— A process we harness to coordinate between
audit-specific subject matter experts and technical
experts

¢ Documenting code
¢ Review and verification of code

¢ Same general guidance papers we use for SAS
are appropriate for Python

Building institutional comfort will
require effort

¢ Write a plain English record of analysis describing
approach and results; have a technical colleague
review the ROA and the code; then less technical
colleague can review whole product that indexes to
that ROA

¢ We've started carefully; expanding gradually
— First automating things we have traditionally done by hand
— Doing considerable human review of results on first few

jobs

e What is the minimum viable number of users in your

organization?

The right role for Python depends on
your agency’s needs and existing tools

¢ GAO has significant investments in SAS and
Stata and accompanying skills.
— Because of that, Python and R are competing to
be the go-to tools for challenges that break the
SAS and Stata database tables in, statistics or
tables out mold
¢ The need for enough users to do meaningful
internal peer review suggests building depth
in a few tools

13

Python facilitates documenting your work

#anything after a pound sign is a comment

 trace library creates a log showing how many times each
line of code executed.

¢ Can create your own log files documenting what
you did, names, sizes, and dates of files you
created, etc.

* Not as automatic as SAS or Stata logging, but you
can build exactly the documentation your
reviewer needs.

Goal: Inform decisions about automating
repetitive work that is hard in other tools
Topics of discussion

* The right tools can tame a deluge of
“inconveniently” formatted data

* Example: FITARA conversion and
analysis

* Quality control tools
* Where to get started and find help

Getting Python

Python is free, open source software (by nerds,
for nerds)

Python alone: available from Python.org;

Python is likely already installed on Linux/Mac
computers, maybe even on Windows

(It’s got plenty of system administration

capabilities that make it attractive to IT
professionals)

14

Python distributions make life better

Python distributions with the Numeric/Scientific
Python Stack have two advantages:
Technical: The versions of the libraries and
Python work together
Bureaucratic: One rather than many installations

GAO uses Anaconda — which is — to our knowledge -
-the only free, multiplatform Numeric Python
stack that supports Python 3.x. It comes with
180+ libraries

Distribution options here:
https://www.scipy.org/install.html

The easy way to get Python into your
agency may be to install it outside the
main network

* Python came to GAO on computers outside of
our main network — including some not
networked at all.

¢ Strong internal controls on software
installation on the main network are common
and reasonable

* We were building the case to roll it out more

broadly when our IT department decided to
install Python for IT’s own purposes

Python 2.x and Python 3.x are (slightly)
incompatible
¢ GAO ARM/CEA has switched to Python 3; few
complaints
¢ Python 3 reduces pitfalls and confusion

e “Python 2.x is legacy, Python 3.x is the present and
future of the language”

¢ Possible to write code that works in Python 2.7 and
Python 3.x.

* If you have a Linux/UNIX/Mac computer, it likely has
Python 2.x installed

¢ Some training material still in Python 2

15

Python 3 is better designed than
Python 2

¢ Backstory: Python 2.x included some questionable or
dated decisions e.g.:

5.0/4.0=1.25but5/4=1

ASCII text (1963 technology) rather than Unicode (supports
Chinese characters and emoticons ©)

Python 3 defaults to handling Unicode errors by throwing
program-terminating exceptions; you'll likely want to set it
to backslash replacing instead

In 2008, Python 3 fixed them; required updating many
libraries to restore compatibility. Python 2.x lives on.

* Python 2 and Python 3 can coexist on the same system;
Anaconda has nice “virtual environment” tools to
facilitate this

Don’t be afraid:
Plenty of high quality help is available

Start on Google or Python.org; then escalate
¢ Python tutorial; online courses
* Python help / docs.python.org/ scipy.org Google searches

. . all of these at
* Discussion boards at e.g. stack overflow once

¢ Colleagues who program in Python or other
languages (many ideas, pitfalls, and approaches
are the same)

¢ Post to StackOverflow
¢ GAO has a support contract

Backup Slides

16

Python has specific libraries for each
example

Dialog boxes:
Tkinter is Python's de-facto standard graphical user interface
Text processing:
string (character strings)
re (regular expressions)
Batch querying the web
urllib (lets you read webpages just like files)
also: bs4 (Beautiful soup; an HTML parser)
Deleting outdated files/identifying file management policy violations
os (operating system)
Custom calculations: optimization, simulation
numpy/scipy (Numeric Python, Scientific Python)
Surveys/lookup: web access to database
django (Django, “The Web framework for perfectionists with deadlines”)
Analyzing a database
CSV (facilitates work with comma separated value text files)
pandas (data structures and data analysis tools)
Not to mention Pyrex and GrumPy

Technology is increasingly important in
our work
¢ Automate obtaining, extracting, transforming

and summarizing information so we can focus
on analyzing rather than clicking

¢ Sometimes the technology is the internal
control

* Settle arguments with agencies by doing —in
days or weeks -- what they say can’t be done

17

