Are your paving dollars keeping up with deterioration?

Budgeting for Pavement Maintenance and Annual Resurfacing
This can cause financial hardship on any local government.

Cities that have had a long time of under funding resurfacing budgets will eventually end up having to come up with very large sums of money in order to play catch up resurfacing and possibly have rebuild some of their streets.

In order to keep resurfacing budgets manageable and to avoid a financial tidal wave of very poor pavements and financial problems,

local governments need to provide annual funding adequate to place all of their street pavements on a 15 year resurfacing cycle.

Failure to do so WILL result in the need to eventually borrow or otherwise receive a large amount of funding to address all of the community’s poor pavements.
Is your agency in a similar situation?

Will it be included among the agencies projected to be borrowing large sums of money to play catch up?

Do you know how many miles of street your agency has?

Do you know what type of resurfacing cycle your agency’s streets are on?

Too often cities cut money from the resurfacing budget if they are running tight in other areas.

This is a big mistake and cities that do this will ultimately pay big time for it.

Resurfacing budgets should never be treated as a source of unallocated funds that can be used elsewhere as needed.

• Cities should allocate 10-20% of available resurfacing funding for Pavement Preservation processes.

• Cities can determine the minimum level of funding they should have by using the formula:

\[
\text{TOTAL MILES OF STREET} \times 6.6\% (0.066) \times 100,000 = \text{MINIMUM FUNDING LEVEL}
\]

(\$ per local cost for 1.5" overlay on 1 mile of 25' W roadway)

• Resurfacing funds should be allocated for pavement maintenance only and not used for other municipal expenses.
- State gas tax revenues given to cities by themselves typically do not provide adequate levels of funding necessary to fully fund a city’s resurfacing program AND other street related activities.

- Cities need to plan on using funds from other revenue sources such as property tax, sales tax, wheel tax, permits, etc. in order to have proper funding levels for street resurfacing.

The River of Pavement Deterioration

Top of the Curve Maintenance
Best Condition Lowest Cost
Studies by several DOTs have also shown that every $1 spent on Pavement Preservation can save $8-$10 or more in future rehabilitation costs.

Preventive Maintenance

No Silver Bullets
No Magic Wands
No Money Trees
No Crystal Balls
Philosophy of Preventative Maintenance

- Cutting thousands of dollars can cost millions.
- Dynamic to each jurisdiction's funding, limitations, political climate, community.

Rating

- Grading done in three categories
 - Good
 - Fair
 - Poor

Coping with Squeaky Wheels

- Citizen and political influence can drive budgets in the ground.
- Learn when to say NO and be prepared to explain the thought process.
- Develop a system that works, be dynamic but hold fast to overall objective – longevity.
- Would you rip your driveway out every time it cracked? Think of it as your money.
How to do it.

- Develop a system that takes the focus away from the streets in dire need of repair and focuses on ALL roadways.
- Don’t ignore the fair, but also don’t ignore the good either.
- Nominal spending now on “good” streets will extend the life-expectancy paying dividends in the future
- Get the most bang for your buck!

Developing a Plan

- Accurate inventory and rating
- Choose streets by rating, length, activity level etc...
- Give a fair amount of attention to each category (1-Good 2-Fair 3-Poor)
- The amount will vary from year-to-year
- Does not have to be an even split (1/3)
- Plan ahead - see the big project coming and adjust accordingly

PAVEMENT REPAIR COSTS INCREASE WITH TIME DUE TO PAVEMENT AGING

- AC Penetration (softness)
- Each $1.00 of Innovation Cost Here...
- Will Cost $8.00 to $10.00 if delayed to here

YEARS (Time Varies for Each Road Section)
Penetration numbers go down

Asphalt Cement

Hardness goes up

Penetration Test

Penetration: The penetration test is a reciprocal measure of the hardness of asphalt at room temperature. The standard penetration test begins with conditioning a sample of asphalt cement at a temperature of 25°C (77°F) in a temperature-controlled water bath. A steel ball needle is then brought to bear on the surface of the asphalt under a load of 100 grams for exactly five seconds. The distance that the needle penetrates into the asphalt cement is recorded to the nearest 0.1 mm. This distance is inversely proportional to the penetration.
When viscosity goes up

Asphalt Cement
Hardness
Increases and
Pavement
Flexibility goes
down
Age hardening & water accelerate deterioration

The Basics of Hot Mix Asphalt

The Basics of Asphalt Chemistry

Asphalt cement glues the stone together.

The performance of asphalt cement as a binder in HMA is determined by its physical properties, which in turn are determined directly by its chemical composition.
Ingredients of Asphalt Cement

Asphalt cement consists of two main groups, Asphaltenes and Maltenes.

Asphaltenes:
Provide body and color. They are brittle like pencil lead, not affected by oxidation.

Maltenes:
Provide the stickiness and adhesive properties, are highly susceptible to oxidation.

Did You Know?

Hardening of the asphalt cement starts in the plant where heated aggregate is mixed with hot asphalt cement. During this short mixing time, the asphalt cement, which is in very thin films, is exposed to high temperatures ranging from 275 to 350°F.

Deterioration

During the short mixing period, air oxidation and loss of maltene components decrease penetration and increase viscosity (brittleness) of the asphalt cement.

The consistency of the asphalt cement after the mixing cycle is only 60% to 75% of its original value.
The Glue is Gone
The hardening of the asphalt binder and the intrusion of water, over time, breakdown an asphalt pavement.

Future
“Prediction is very hard, especially when it’s about the future”
-Yogi Berra.

Notice how the Pavement Preservation tools in the upper drawers have much lower costs!

The toolbox should contain tools for:
- PRESERVATION
- REHABILITATION
- and even
- RECONSTRUCTION
You can’t change the weather, so change the road

RECLAMITE ASPHALT REJUVENATOR
REMEDIES the cause of pavement deterioration
Saves Money

The right treatment at the right time

Why Reclamite?
Same Ingredients in the Asphalt

It remedies the causes of aging by replenishing the same natural petroleum components lost in the heat associated with manufacturing and the in-place deterioration caused by weathering.

Reclamite® Asphalt Rejuvenator
Restores maltenes keeping the pavement flexible and resistant to premature cracking and raveling.
Pink color disappears indicating absorption must penetrate to rejuvenate.

Light coating of sand applied.

Stripe Saver
Sand Swept within 24-48 Hours

Completed application

Reclamite

Penetrates down into the pavement.
Numerous studies and reports conducted over the past 30+ years have confirmed the effectiveness of rejuvenators in extending pavement life.
What You Get

Maintain Smooth Pavement

Avoid Costly Repairs

Extend Road Life (30-40%)

Reclamite® is a low cost first line of defense in any pavement preservation program. The cost is less than $0.90 per square yard applied.
Overband Crack Sealing

ODOT Specification #423

- **Base Asphalt**: PG 64-22
- **Install Temperature**: 45° and rising
- **Installation Thickness**: 1/16” – 1/8”
- **Installation Bandwidth**: 2” - 4”
- **Pay Items**: SY or Pound

Overband Crack Seal

When:
2-4 years after new pavement is installed

Result:
3- 5 years life extension

Overband Crack Sealing

Chip Seal

ODOT Spec #422

Two Components
Asphalt Emulsion
Cover Aggregate

Chip Seal
Asphalt Emulsion
.37 - .42 gallons/sy

Anionic – Negative (-) Charge
RS-2
RS-2P
HFRS-2P

Cationic – Positive (+) Charge
CRS-2
CRS-2P
SAM-C

Chip Seal

ODOT Specification #422
Chip Seal
Cover Aggregate
18-24 lbs/sq

Limestone - Porous
Slag - Durable
Natural Stone – Cost Effective
Negative (-) Charge

Chip Seal
Historical Issues

- Dust
- Stone Loss
- Flushing
- Public Perception - Bad

Chip Seal
Present Solutions

- Fog Seal / Pre-Coat Aggregate
- Increased Temperature App
- Correct Calibration
- Public Perception Getting Better
Chip Seal

ODOT District 6 – Fog Seal

Chip Seal

Treatment Costs

Pay Item = SY
SY = $1.25 - $2.00
Fog Seal = $0.25 - $0.50

Micro Surfacing – ODOT Spec

#421
Micro Surfacing

- Polymer Modified Asphalt Emulsion
- Crushed, Angular and Washed Limestone
- Breaking and Setting Additives
- Portland Cement
- Water

Micro Surfacing

Purposes

Stop Pavement Oxidation
Seal Pavement Surface from Raveling
Provide Surface Friction - Safety
Fill Wheel Ruts
Extend Pavement Life (8-10 Years)
Micro Surfacing and Black Mat™ Treatment Costs

Pay Item = SY

- Single Course - $2.00 - $2.75
- Double Course - $2.75 - $3.50
- Ontario Traprock - $0.15 - $0.30

Cape Seals

[Image of roadwork]

Cape Seals

[Image of sealed road]
Cape Seals

Thin Surface Overlays ODOT 424

1/2" HMA Overlay being applied.

Thin Surface Overlays ODOT 424

3/4" HMA Overlay being applied in Oak Ridge, TN.
Thin Surface Overlays

3/4” HMA Overlay in Oak Ridge after 9 years and one Reclamite treatment

MANAGING PAVEMENTS

The old “WORST FIRST” APPROACH IS SIMPLY THE WORST APPROACH for managing pavements.

Managing pavements through the use of the Pavement Preservation approach is the Best Approach!

Don’t have the funds to implement preservation? Sure you do!

If your city is resurfacing 10 miles of roads, simply defer one mile off the list for one year and use the funds to rejuvenate 8-10 miles of roads.

Now, you will have addressed 17 miles instead of 10 miles … And you did it at no additional cost!
Aligns with your Goals

- Extending your road life
- Saving you money
- Keeping your roads smooth and meeting residents’ expectations

Don’t Conceal the Effect of Asphalt Aging, Remedy the Cause

David Helm
Pavement Technology, Inc
800-333-6309

“A Stitch in Time Saves Nine”
What Elected and Appointed Local Officials Need to Know About Funding & Maintaining Pavement Maintenance

John G. Calvert
Director – Tennessee Public Works Institute

Elected and appointed officials in today’s government face many trials and tribulations in the process of performing the responsibilities that accompany their positions. The struggle to balance wants and needs with available funding seems to be never ending.
Each year the process of planning, preparing and approving operating budgets grows more cumbersome. Officials are often stuck between a rock and a hard spot as they try to accommodate taxpayers desires for low tax rates in a manner that prevents reductions in services for the community. This becomes very difficult considering that the costs of goods, materials and services used by most governments continue to rise annually.

This task can be less stressful in communities that are fortunate to be in a growing mode. However, it can be very difficult and trying in communities that are experiencing very little or no growth. The pressure from citizens to hold property tax and utility rates steady each year is and will always bear heavily on officials responsible for delivering the goods and services their publics desire and often demand.

During times of tight budgets and reductions in funding officials sometimes make reductions in budgets submitted to them for maintenance of the public-owned infrastructures that surround them. This infrastructure includes a community’s utilities such as electric, natural gas, water, wastewater and storm water systems. It includes public-owned buildings and facilities. It also includes roads, streets and highways and their related pavements.

In years past, elected and appointed officials of many communities in efforts to prevent rate increases chose to not provide the funding requested by department managers and directors for maintenance of water and wastewater systems. It is also possible that many of the utility managers chose not to ask for increases in funding believing their efforts would be in vain. Whatever the reason, it likely appeared at the time that those officials were helping reduce or minimize costs for their citizens and customers. However, the dollar saved in those past years is often costing the community three or four dollars today as many communities have had to drastically increase maintenance funding in order to comply with state or federal mandates related to the Clean Water Act. Some communities are now having to annually budget millions of dollars for utility infrastructure rehabilitation on systems that in years past failed to have the funding for adequate and proper maintenance.

One other vital public-owned infrastructure has been critically under funded for many years as well by many communities. Funding for maintenance of roads and streets has too often been an area often cut or reduced by elected officials as they toiled with reducing or minimizing tax increases in their community. This practice has ultimately resulted with many communities having streets whose pavements are in very poor and failing condition. Some streets are in such poor condition they are having to be completely reconstructed at costs that are four to five times that which would have been paid if they could have been simply resurfaced on a timely schedule and frequency.

The historical lack of adequate funding in many communities may be attributed to a number of reasons. As noted earlier it could be due to elected officials and their attempts to reduce budgets or minimize increases in funding and tax rates. It could also be due to reluctance by city managers, public works and street directors or others who are hesitant to request the funding increases sufficient to allow for adequate maintenance believing their attempts would be in vain.

One other possible reason might be that the actual department director or other person responsible for street resurfacing and maintenance is somewhat fearful of asking for funding increases due to fear of how the request might be received by his or her
superior(s). Many city managers and administrators are advising all department heads to submit reduced budgets. As such, department leaders may believe it to be potentially detrimental to them if they made such a request.

And one more possible and very real reason for officials to not provide adequate funding for pavement maintenance could be attributed to a total lack of knowledge and/or understanding of pavements and how they age and deteriorate with time.

This is to be expected considering that most elected officials and city managers typically have no formal experience, education or training in pavement maintenance. They should have confidence in and expect their public works leaders and highway maintenance managers to provide them with background information in this area. However, it is quite common to find public works directors and engineers that actually have no real knowledge in the area of pavement maintenance as well. Many engineers I have known openly admit that they have no experience in this area and acknowledge that their college engineering courses did not address pavement maintenance in depth, but rather focused more on roadway and pavement design and construction.

As such, there are ten basic but critical things that elected and appointed officials need to know about pavement maintenance and the consequences for failing to provide adequate annual funding for it.

1. Pavements begin aging and deteriorating the day they are constructed or applied.

2. On the average, most asphalt pavements have a cost-effective useful life of 15 years. Some will have a cost-effective life of only 10 to 15 years while others may have 15 to 20 years depending on design, structure, traffic volumes and weights and climate. This does not mean that pavements will completely fail after 12 to 15 years, although some do. It means that after that age the cost of performing routine maintenance on the pavement will greatly, but unnecessarily increase as the pavements develop more extensive cracking, pot holes, and other defects. Typically pavements remain in excellent to fair condition for the first 5 or 6 years of their life. Then after approximately 6 years they begin to exhibit cracking and loss of fine aggregates from the surface. Their condition slowly changes from excellent to fair over the first 11 or so years, then the condition dramatically deteriorates over the next 5 to 7 years as noted on the graph at the top of the following page.

3. In order to keep up with the average rate of deterioration, most independent agencies such as APWA, the Asphalt Institute and others recommend that pavements be resurfaced on a regular frequency such as a 15 year cycle.

![Typical Asphalt Pavement Deterioration Curve](image-url)
4. Cities and communities need to resurface 6.6% of their streets annually in order to keep up with the average rate of deterioration and have their pavements on a 15 year cycle.

5. The current (2009) average cost for resurfacing one mile of 25' wide roadway in Tennessee is approximately $80,000. It should be noted that the actual cost for cities and/or counties can vary depending on overlay thickness, volume of work, availability of multiple bidders to provide competitive pricing, and proximity from the lowest bidders to the work location.

6. A formula to use for calculating and determining how much approximate funding should be in a typical city or county’s annual resurfacing budget is:

\[
\text{Total Miles of Street (Centerline miles) } \times 6.6\% \times 80,000
\]

Example: City “A” has 100 centerline miles of street. It should have a resurfacing/contracts budget of $363,000 annually. Using the above formula…....

\[
100 \times 6.6\% \times 80,000 = 528,000.
\]

7. One dollar spent using proper preventive maintenance during a pavement’s first five years of life can save three to four dollars over the pavement’s next 10 to 15 years of life.

8. There are many time proven and cost effective preventive maintenance activities, such as penetrating asphalt rejuvenators that can be used during a pavement's first 1 to 5 years of life to extend its useful life from 15 to 20-25 years.

9. Cities can resurface more miles of pavement annually by using thinner hot-mix overlays such as 0.75” and 1.0” in depth rather than the historical and common 1.5” overlay. (One ton of asphalt mix placed at 0.75" thickness will cover twice the amount of pavement as one ton placed 1.5” thick.) Approximately 75% of most cities streets are in residential areas and do not need the thicker 1.5” overlay assuming the street has a sound structure.

10. Longer lasting pavements reduce an agency’s pavement’s life cycle cost per year. A pavement managed and maintained in a manner that provides for a 20 year life will have an annual life cycle cost that is approximately 25% lower than that of a 15 year pavement.

Example:

A. The annual life cycle cost for a 15 Year pavement one mile in length and applied at a cost of $80,000 per mile equals $80,000/15 or $5,333 per year.

B. The annual life cycle cost for the same pavement but with a 20 year life equals $80,000 ÷ 20 equals $4,000 per year, a savings of $1,333 per yr.
A survey conducted by the City of Oak Ridge in 2002 indicated that the average per cent of total miles resurfaced annually by the cities surveyed was approximately 4.5%. This amount equates to a 22 year resurfacing cycle, which means those cities are not keeping up with the rate at which pavements deteriorate. A 22 years cycle would result with the overall average condition of the pavements getting worst each year meaning more costly resurfacing and repair techniques would be required.

One of the cities surveyed averaged resurfacing only 1.6% of its streets annually. This means that the city was on a 62 year resurfacing cycle. That city has approximately 400 centerline miles of streets and therefore should have had approximately $1.4 Million in annual resurfacing funds and should have been resurfacing 26 or so miles each year. Instead that city only had an average of $500,000 in its annual resurfacing budget was falling behind on and essentially neglecting nearly 20 miles per year. Since the survey, the city has apparently seen the light of its errors and indicated it plans to spend $3.2 million over the next two years on resurfacing. To avoid future borrowings, the city will need to commit to budgeting of $1.6 Million per year every year afterwards or it will find itself in the same predicament within the next 5 to 10 years. It is good that this city’s leaders have stepped up to the plate as their past practice might have otherwise been seriously frowned upon by upcoming GASB 34 guidelines and auditors.

The problems with proper pavement maintenance are not limited to the state of Tennessee. In fact, the Federal Highway Administration and the Federal Pavement Preservation task force has launched a new initiative referred to as Right Treatment for the Right Pavement at the Right Time. In essence they have acknowledged the problems with pavement maintenance by many city, county and state highway agencies across the nation and the fact that historically inadequate funding has been a major force behind the problem. Both agencies are trying to educate and emphasize to cities and counties the availability of cost effective preventive maintenance strategies that can greatly aid in addressing the problems of aging and deteriorating pavements.

So, in summary what can cities do to protect and maintain their costly road and street infrastructure?

First of all, its elected and appointed officials should use the noted formula to determine if the city has adequate funding for street resurfacing and preventive maintenance activities. If they don’t meet the formula’s calculation, they have no choice but to increase their budgets in a manner that meets that requirement, preferably the sooner the better, like within 1 to 3 years.

The cities should implement the use of an Enhanced Pavement Maintenance Program (EPMP) that uses a wide variety of both preventive and corrective maintenance activities rather than just a conventional 1.5” overlay.

The EPMP should include such activities as:

- **Preventive maintenance** activities including the use of:
 - Penetrating asphalt rejuvenators in years 1 to 5 of a pavement’s life.
 - Restorative seals, slurry and micro-thin (1/2-inch) resurfacing for pavements 8 to 10 years old.
 - Crack filling and/or sealing on pavements 8 to 10 years old or older
• **Corrective maintenance** activities should include:
 - A variety of pavement milling techniques and depths including both Wedge and Whole Width milling techniques
 - A finer grade asphalt mix design for use with 0.75”, 1.0” and 1.25” thick overlays
 - Conventional asphalt mix designs for 1.5” thick overlays.

The graph below shows the various maintenance options and approximated costs that should typically be expected and/or used on pavements of various ages.

![Graph showing pavement preservation costs and maintenance options](image-url)
Elected and appointed city officials and city department heads and leaders should remember they are all on the SAME TEAM. It is all of their professional responsibilities to protect and adequately maintain their taxpayers public-owned roads and streets and other infrastructure. It is also their responsibility to provide sufficient funding and planning to ensure proper maintenance is provided, even when doing so might cause moderate to severe increases in funding levels and tax rates.

Their knowledge and understanding of the pavement deterioration process and maintenance strategies will allow them to properly educate or advise citizens of the reasons behind their decision making process.

The elected officials have the ultimate and last decision when it comes to providing adequate funding for pavement maintenance. They can choose to ignore the situation in order to prevent tax increases (possibly in an attempt to insure reelection) or they can step up to the plate and do what is necessary. They need to remember during budget preparation that the pavement maintenance dollar they cut or save today will cost their taxpayers of tomorrow three to four dollars, if not more.

The old saying of “pay me now or pay me later” is right on when it relates to pavement maintenance, however, a truer version now might be “Pay me a $1 today or Pay me $5 later”.

About The Author
John Calvert has over 30 years experience in municipal government and public works. He is a graduate of Middle Tennessee State University and retired from the City of Oak Ridge as Public Works Division Manager in 2003 after 28 years of service. He joined the staff of Pavement Technology, Inc. in July 2003 as technical consultant for the company where he meets and works with local and state public works and highway officials across the nation. He also serves as Director of the Tennessee Public Works Institute and Administrator of the Tennessee Chapter of the American Public Works Association.

He has been a speaker and presenter on pavement maintenance at APWA national and state conferences and served as APWA’s Speaker on Pavement Preservation for its 2007 nationwide live webcast on Pavement Maintenance. He has also taught pavement maintenance classes for the UTAH LTAP and UTAH League of Cities “Road School”, the University of Tennessee TTAP (LTAP) Office and the National Center for Pavement Preservation funded by the FHWA. He has written various articles for Tennessee Public Works Magazine, the APWA Reporter national magazine and other associations.